Skip to main content
  • See a full list of papers on Google Scholar.
  • Co-first and co-last authors are indicated by + and *, respectively.

2025

Quantitative characterization of cell niches in spatially resolved omics data.
Birk, S., Bonafonte-Pardàs, I., Feriz, A. M., Boxall, A., Agirre, E., Memi, F., ... & Lotfollahi, M.
Predicting cell morphological responses to perturbations using generative modeling.
Palma, A., Theis, F. J., & Lotfollahi, M.
Towards multimodal foundation models in molecular cell biology.
Cui, H., Tejada-Lapuerta, A., Brbić, M., Saez-Rodriguez, J., Cristea, S., ... & Lotfollahi, M., ... & Wang, B.
Integration and querying of multimodal single-cell data with PoE-VAE.
Litinetskaya, A., Schulman, M., Curion, F., Szalata, A., Omidi, A., Lotfollahi, M., & Theis, F. J.
Integrating multi-covariate disentanglement with counterfactual analysis on synthetic data enables cell type discovery and counterfactual predictions.
Megas, S., Amani, A., Rose, A., Dufva, O., Shamsaie, K., Asadollahzadeh, H., ... & Lotfollahi, M.
Mapping and reprogramming human tissue microenvironments with MintFlow.
Akbarnejad, A., Steele, L., Jafree, D. J., Birk, S., Sallese, M. R., Rademaker, K., ... & Lotfollahi, M.

2024

Multi-modal generative modeling for joint analysis of single-cell T cell receptor and gene expression data.
Drost, F., An, Y., Bonafonte-Pardàs, I., Dratva, L. M., Lindeboom, R. G., Haniffa, M., ... , Lotfollahi, M.*, & Schubert, B.*
A single cell and spatial genomics atlas of human skin fibroblasts in health and disease.
Steele, L., Admane, C., Chakala, K. P., Foster, A., Gopee, N. H., Koplev, S., ... & Lotfollahi, M.*, & Haniffa, M.*
ArchMap: A web-based platform for reference-based analysis of single-cell datasets.
Lotfollahi, M., Bright, C., Skorobogat, R., Dehkordi, M., George, X., Richter, S., ... & Theis, F. J.
Pertpy: an end-to-end framework for perturbation analysis.
Heumos, L., Ji, Y., May, L., Green, T., Zhang, X., Wu, X., Ostner, J., Peidli, S., ... & Lotfollahi, M.*, & Theis, F. J.*
Toward learning a foundational representation of cells and genes.
Lotfollahi, M.
The future of rapid and automated single-cell data analysis using reference mapping.
Lotfollahi, M., Hao, Y., Theis, F. J., & Satija, R.
Deep learning in spatially resolved transcriptomics: a comprehensive technical view.
Zahedi, R., Ghamsari, R., Argha, A., Macphillamy, C., Beheshti, A., ... & Lotfollahi, M.*, & Alinejad-Rokny, H.*
Multimodal weakly supervised learning to identify disease-specific changes in single-cell atlases.
Litinetskaya, A., Shulman, M., Hediyeh-zadeh, S., Moinfar, A. A., Curion, F., ... & Lotfollahi, M.*, & Theis, F. J.*
Deep generative modeling of transcriptional dynamics for RNA velocity analysis in single cells.
Gayoso, A., Weiler, P., Lotfollahi, M., Klein, D., Hong, J., Streets, A., Theis, F. J., & Yosef, N.
An integrated single-cell reference atlas of the human endometrium.
Marečková, M., Garcia-Alonso, L., Moullet, M., Lorenzi, V., Petryszak, R., ... & Lotfollahi, M., ... & Vento-Tormo, R.

2023

Population-level integration of single-cell datasets enables multi-scale analysis across samples.
De Donno, C., Hediyeh-Zadeh, S., Moinfar, A. A., Wagenstetter, M., Zappia, L., ... & Lotfollahi, M., & Theis, F. J.
Single-cell reference mapping to construct and extend cell-type hierarchies.
Michielsen, L.+, Lotfollahi, M.+, Strobl, D., Sikkema, L., Reinders, M. J. T., Theis, F. J., & Mahfouz, A.
Best practices for single-cell analysis across modalities.
Heumos, L., Schaar, A. C., Lance, C., Litinetskaya, A., Drost, F., Zappia, L., ... & Lotfollahi, M., ... & Theis, F. J.
An integrated cell atlas of the human lung in health and disease.
Sikkema, L., Ramírez-Suástegui, C., Strobl, D. C., Gillett, T. E., Zappia, L., ... & Lotfollahi, M., ... & Theis, F. J.
Predicting cellular responses to complex perturbations in high‐throughput screens.
Lotfollahi, M.+, Susmelj, A. K.+, De Donno, C.+, Hetzel, L., Ji, Y., Ibarra, I. L., ... & Theis, F. J.
The scverse project provides a computational ecosystem for single-cell omics data analysis.
Virshup, I., Bredikhin, D., Heumos, L., Palla, G., Sturm, G., Gayoso, A., ... & Lotfollahi, M., ... & Theis, F. J.
Mapping cells to gene programs.
Lotfollahi, M., Rybakov, S., Hrovatin, K., Hediyeh-zadeh, S., Talavera-Lopez, C., Misharin, A. V., & Theis, F. J.
Biologically informed deep learning to query gene programs in single-cell atlases.
Lotfollahi, M.+, Rybakov, S.+, Hrovatin, K., Hediyeh-Zadeh, S., Talavera-López, C., ... & Misharin, A. V., & Theis, F. J.

2022

Modelling method using a conditional variational autoencoder.
Theis, F. J., Lotfollahi, M., & Wolf, F. A.
Squidpy: a scalable framework for spatial omics analysis.
Palla, G., Spitzer, H., Klein, M., Fischer, D., Schaar, A. C., Kuemmerle, L. B., ... & Lotfollahi, M., ... & Theis, F. J.
A Python library for probabilistic analysis of single-cell omics data.
Gayoso, A.+, Lopez, R.+, Xing, G., Boyeau, P., ... & Lotfollahi, M., … & Yosef, N.
Mapping single-cell data to reference atlases by transfer learning.
Lotfollahi, M., Naghipourfar, M., Luecken, M. D., Khajavi, M., Büttner, M., ... & Theis, F. J.

2021

Machine learning for perturbational single-cell omics.
Ji, Y., Lotfollahi, M., Wolf, F. A., & Theis, F. J.

2020

Conditional out-of-distribution generation for unpaired data using transfer VAE.
Lotfollahi, M., Naghipourfar, M., Theis, F. J., & Wolf, F. A.

2019

scGen predicts single-cell perturbation responses.
Lotfollahi, M., Wolf, F. A., & Theis, F. J.
Deep packet: A novel approach for encrypted traffic classification using deep learning.
Lotfollahi, M., Siavoshani, M. J., Zade, R. S. H., & Saberian, M.